
N94-21343
DEVELOPING A SPACE NETWORK INTERFACE SIMULATOR:

THE NTS APPROACH

Gary E. Hendrzak
Booz ° Allen & Hamilton Inc.

7404 Executive Place

Suite 500

Seabrook, Maryland 20706
Tel: (301) 805-5423

Fax: (301) 805-9535

ABSTRACT

This paper describes the approach used by BoozoAllen & Hamilton to redevelop the

Network Control Center (NCC) Test System (NTS), a hardware and software facility

designed to make testing of the NCC Data System (NCCDS) software efficient, effective,

and as rigorous as possible prior to operational use. The NTS transmits and receives

network message traffic in real-time. Data transfer rates and message content are strictly

controlled and are identical to that of the operational systems. NTS minimizes the need for

costly and time-consuming testing with the actual external entities (e.g., the Hubble Space

Telescope (HST) Payload Operations Control Center (POCC) and the White Sands Ground

Terminal). Discussed are activities associated with the development of the NTS, lessons

learned throughout the project's lifecycle, and resulting productivity and quality increases.

INTRODUCTION

NASA_s Spaceflight Tracking and Data

Network (STDN) provides continuous

telecommunications coverage for low-earth

orbiting spacecraft such as the Space

Shuttle, the HST, and the Gamma Ray

Observatory. The NCC, located at the

PAGE BLAi'tK NOT FtLI_ED 243

Goddard Space Flight Center (GSFC),

serves as the interface between the STDN

and its customers, who primarily use the

network to retrieve science and telemetry

data from these spacecraft. The NCC

consists of automated planning,

scheduling, fault isolation, performance

monitoring, communications, and display

systems(collectively called the NCCDS)

that manage and control the network's

resources.

Recognizing this situation, GSFC

management commissioned the

development of a new NTS in late 1989.

Although the STDN offers a set of

standard services to all science users, the

addition of new users and new

elements requires modifications

438,000 lines of source code

NCCDS.

to the

integration of a new Tracking and Data

Relay Satellite System (TDRSS) earth

terminal in White Sands, New Mexico, the

Second TDRSS Ground Terminal

(STGT).

STDN

to the

in the

The most recent major change

NCCDS was driven by the

The STGT integration requires intensive

testing of new NCCDS software as well as

tests of the changes to the interfaces

between the NCCDS and each STDN

user. The existing test system developed

prior to 1983 was coded in assembly

language and could not fulfill these test

requirements. In addition, the user

interface was cumbersome and supported

only a single tester. The alternative was

to test with the operational sites, which

posed unacceptable risks to ongoing

support of high profile user missions.

Figure 1 portrays the role of the NTS in

the context of the STDN. Testers use the

NTS to simulate and test all external

interfaces to the NCCDS. The NTS can

also validate operational scenarios,

provide an off-line test platform for new

NCCDS software releases, and collect a

wide variety of test data for analysis by

developers and operations personnel.

The testing process consists of three

phases shown in Figure 2. The first phase

involves the development of test scripts,

messages, and timing delays to simulate

actual operational scenarios. For example,

schedule requests from the HST POCC

would be sent to the NCCDS, validated,

and acknowledged. In the second phase,

the test scripts are transmitted over actual

NASA communication (Nascom) lines to

the off-line NCCDS, while logging all

message traffic. In phase three, the

message traffic is analyzed to verify that

test objectives were met.

244 _ :-:

FIGURE 1

_S IN CONTEXT

r

FIGURE 2

TESTING PHASES

__ 1. DATA CREATION _ vl rat
_ /-_-_ I _., /__ 2._A_

_I _ i _" _ _i--_--_II TIMW.
- _ O_ L._ TESTING

P_

245

DEVELOPMENT OBJECTIVES

In addition to those requirements

documented in the System Requirements

Specification [NTS93], several project

goals were set. The system had to meet

the schedule for the implementation of

STGT-related changes in the NCCDS

software. In addition, existing

functionality and command syntax had to

be replicated to minimize the learning

curve required for NCCDS test teams.

The human-machine interface had to be

user-friendly and permit concurrent use.

Finally, the NCCDS testing process had to

be made more efficient by automating as

many functions as possible. Likewise, the

NTS development approach had to meet

a set of objectives that the development

team believed were vital:

• To perform only those tasks that

directly added value and directly

contributed to the success of the

project

• To have end-users play a vital role

throughout the project life-cycle

• To develop a system that promotes

encapsulation, maintainability,

modularity, extensibility, and re-use

• To define a process that is

measurable, manageable, and

repeatable.

To meet these goals and objectives, a

phased implementation schedule was

selected. The first release of the system

met these major goals: duplication of the

present functionality, implementation of

the new functionality required for STGT-

related modifications, as well as a new

human-machine interface. Subsequent

releases were used to continually

automate the testing process, save time,

and support more rigorous scenarios.

DEVELOPMENT APPROACH

The NTS development approach followed

the traditional waterfall model in which

the process cascades from one level to the

next in a smooth progression [SEL92].

While this is neither unique nor

groundbreaking, the model was deemed

sufficient to meet the project's goals.

However, the development team realized

that a number of inefficiencies embedded

in the development process had to be

justified or eliminated to stay on schedule.

Examples include excessive amounts of

documentation, inefficient configuration

246

management procedures, extended review

and approval cycles, and responding to

issues not relevant to the project. The

development team believed that a more

streamlined and flexible approach was

preferable to the rigid, structured

approach prescribed by the waterfall

model. The philosophy of "Lean Software

Development" described by Basili [BAS92]

and based upon the work of Womack, et.

al. [WOM90], seemed a perfect fit. This

concept involves tailoring the development

process to the needs of the product.

Additionally, the Plan-Do-Check-Act cycle

of Continuous Process Improvement

espoused by Derning [DEM86] was

applied to the development process, rather

than to the product. As the project

progressed, the entire process was

continually refined and lessons learned

were incorporated into subsequent

development cycles.

Another key element in the approach was

to include the NTS users in weekly

functionality discussions and demonstra-

tions aimed at specifying and clarifying

new NTS requirements. The results of

these meetings were captured and

documented. Through numerous

discussions, the NTS development team

gained an in-depth understanding of the

users' needs. This knowledge and first-

hand experience allowed both developers

and users to recommend and refine a

number of enhancements that saved time

during test sessions, increased the quality

of testing, and decreased the amount of

human-intensive analysis that was common

to the testing process. Not only was

testing more efficient in the NCC, but the

new NTS eliminated most of the

preliminary testing sessions with each of

the 34 external entities.

The development team also determined

that the content of the design reviews was

not directly adding value to the project.

All too often, no substantive issues were

raised at the reviews, mainly because the

attendees were users concerned with what

the system would do, and not how it was

to be implemented. With the approval of

GSFC management, the number and

content of the reviews were tailored to

explain the system from a user's

perspective. System features were

discussed, followed by a brief overview of

their implementation. Finally, an

operations concept of the feature was

247

presentedusing ToolBookTM, a PC-based

animation tool. These reviews, coupled

with frequent human-machine interface

demonstrations and a full day of hands-on

training produced a system that exactly

matched user expectations.

The development team also selected the

Transportable Applications Environment

(TAE) Classic for the user interface.

TAE, developed for GSFC and

maintained by Century Computing,

consists of an interface that interacts with

the user and manages the execution of

application programs, while shielding the

user from the host operating system. TAE

provides a hierarchical menu system, on-

line, context-sensitive help, parameter

range checking, and a tutor mode to help

new users build valid command strings.

Thus, the users were required to learn

only the NTS interface and not concern

themselves with the operating system. By

using TAE, the development team saved

an estimated 630 staff days (approximately

$250K) of development effort. The single

user problem was alleviated by hosting the

system on a Masscomp 6600 computer.

The Masscomp is a Unix-based

timesharing system that supports 16

concurrent users.

The software, developed in C, was

designed with reuse in mind. Various

standalone programs were developed to

assist the user in developing test data,

changing the system configuration, and

analyzing test results. The human-

machine interface to all of these tools is

common and contains over 7000 lines of

reused software. In addition, a library of

common functions was developed,

containing over 3500 lines of code. In

total, over 18% of the software was reused

in subsequent releases to implement new

functionality.

Due to the development team's close

working relationship with the user group,

problems were usually resolved and tested

on the development system prior to

receipt of the official documentation

describing the problem. In addition, the

team foresaw a problem associated with

dual mode use (classified vs. unclassified).

Sanitization of over 1.3 gigabytes of disk

storage would require 4 hours. The team

recommended removable disk drives,

resulting in sanitization time being

reduced to only 5 minutes.

248

RESULTS

The results of the principles applied on

this project can best be described

quantitatively. Figure 3 presents software

error rates for the three development

cycles. Table 1 presents software

productivity metrics, based upon the

philosophy of Putnam and Myers [pLrI'92].

These statistics suggest that continual

refinement of the development process

FIGURE 3

SOFTWARE ERROR RATES

5.0_"

4.00-

3.00-

_o 2.00-
U,l

1.00-

0._

/L/---7

4.90

t J !

1 2 3

Release Number

TABLE 1

SOFTWARE DEVELOPMENT METRICS

Version

Release 1

Release 2

Release 3

Lines

Of Code x

(LOC)

Staff

Months 2

(Effort)

Calendar Productivi_
Months 2 Parameter"

(Time) (PP)
' ' 'd

5315

21,836 53.0

Productivity
Index 4

(PD

22,023 83.0 14.0 9

26,773 89.5 11.0 8690 11

9.5 10261 12

NOTES

.

2.

)

Booz.Allen-developed software only.

Effort and Time are calculated from the beginning of the design phase (following the

Software Requirements Review) until conclusion of the code/unit test phase.

The Productivity Parameter (PP) is calculated according to the following equation:

PP = (LOC)/(Effort/B)O/3) (Time) O/3)

.

B, the special skills factor, is a function of size. For all releases, B = 0.18.

The Productivity Index (PI) is obtained from Table 2.3 of [PUT92].

249

resulted in higher productivity and lower

error rates. User satisfaction ratings of

the tool's functionality, completeness of

the User's Manual, and the quality of

training continues to be high. Suggestions

for system enhancements and additional

functionality were prioritized and

addressed in each new release with no

impact to cost or schedule.

In May of 1993, the NTS development

effort was selected as one of five

representative software projects to be

part of a Booz, Allen, corporate-wide

software process assessment based upon

the criteria developed by the Software

Engineering Institute (SEI). The Institute

has developed an instrument to assess an

organization's software development

process. The results of this self-

assessment showed that the NTS

development team was functioning as a

Level 2 organization while exhibiting

many of the qualities characteristic of a

Level 3 organization. These results are

significant because the SEI process

assessment procedure is geared more

toward larger, more functionally

segmented organizations (e.g., those

having separate configuration manage-

meant, quality assurance, test, and

document preparation teams), whereas the

NTS development team never consisted of

more than 10 members.

CONCLUSIONS

Applying the principles of Lean Software

Development and Continuous Process

Improvement resulted in an increase in

productivity and quality. This increase

allowed for the delivery of additional

functionality at no additional cost. Even

though each release was successful, the

development team continued to look for

ways to improve and streamline the

development process. Getting the user

community involved from the very

beginning and soliciting their input

throughout the entire development process

is a key strategy for success. Software

development is by nature a dynamic

process, constantly evolving and maturing.

Change is a part of that process, and is

not only necessary, it should be required.

The approach described here has resulted

in the delivery of three separate releases

of NTS software totaling 80,000 lines of

source code. Each of these releases was

250

delivered on or aheadof scheduleand 3-

5% under budget. The NTS is functioning

as intended, allowing testers to perform

more robust and exacting tests on the

target software. In fact, during the first

fewweeksof operational use,testersusing

the new NTS uncoveredseveraldefectsin

the NCCDS software that had not been

discoveredby its developersor during any

of the previous independenttest phases.

The NTS providesa significant increasein

tester productivity over the previous

system, permitting simultaneous test data

creation, test execution, and results

analysis. The system was designed and

documented to support future growth and

changing requirements. It is a user-

friendly test tool, decreasing the overall

certification time of the NCCDS software,

while greatly improving testing accuracy.

ACKNOWLEDGMENTS

The author wishes to thank Clint

Provenza, Hellmut Scheel, and Bill Brooks

for their comments on earlier drafts of this

paper. In addition, the input and

guidance of Keiji Tasaki and Roger

Clason, GSFC project managers, and of

course, the NTS user community, greatly

contributed to the success of this project.

[BAS92]

[DEM86]

[NTS93]

[PUT92]

[SEL92]

[WOM90]

REFERENCES

Basili, V., The Experience

Factory: Can it make you a
5?..., Proceedings of the
17th Annual Software

Engineering Workshop,
Goddard Space Flight
Center, Greenbelt, MD,
December, 1992.

Deming, W., Out of the
Crisis, MIT Center for
Advanced Engineering

Study, MIT Press,
Cambridge, MA, 1986.

NASA/GSFC, NTS

Requirements Document,
530-SRD-NTS, February,
1993.

Putnam, L. and W. Myers,
Measures for Excellence,

Yourdon Press, Englewood
Cliffs, NJ, 1992.

NASA/GSFC Software

Engineering Laboratory,
Recommended Approach to
Software Development,
SEL-81-305, August, 1986.

Womack, J., et. al., The

machine that changed the
world: based on the
Massachusetts Institute of

Technology 5-million dollar
5-year study on the future of
the automobile, Rawson
Associates; New York, NY,
1990.

251

